Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions

نویسندگان

  • G. D. Rayner
  • Helen L. MacGillivray
چکیده

Continuing increases in computing power and availability mean that many maximum likelihood estimation (MLE) problems previously thought intractable or too computationally difficult can now be tackled numerically. However, ML parameter estimation for distributions whose only analytical expression is as quantile functions has received little attention. Numerical MLE procedures for parameters of new families of distributions, the g-and-k and the generalized g-and-h distributions, are presented and investigated here. Simulation studies are included, and the appropriateness of using asymptotic methods examined. Because of the generality of these distributions, the investigations are not only into numerical MLE for these distributions, but are also an initial investigation into the performance and problems for numerical MLE applied to quantile-defined distributions in general. Datasets are also fitted using the procedures here. Results indicate that sample sizes significantly larger than 100 should be used to obtain reliable estimates through maximum likelihood.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in Simple Step-Stress Model for the Marshall-Olkin Generalized Exponential Distribution under Type-I Censoring

This paper considers the simple step-stress model from the Marshall-Olkin generalized exponential distribution when there is time constraint on the duration of the experiment. The maximum likelihood equations for estimating the parameters assuming a cumulative exposure model with lifetimes as the distributed Marshall Olkin generalized exponential are derived. The likelihood equations do not lea...

متن کامل

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

Inference for the Type-II Generalized Logistic Distribution with Progressive Hybrid Censoring

This article presents the analysis of the Type-II hybrid progressively censored data when the lifetime distributions of the items follow Type-II generalized logistic distribution. Maximum likelihood estimators (MLEs) are investigated for estimating the location and scale parameters. It is observed that the MLEs can not be obtained in explicit forms. We provide the approximate maximum likelihood...

متن کامل

The Type I Generalized Half Logistic Distribution

In this paper, we considered the half logistic model and derived a probability density function that generalized it. The cumulative distribution function, the $n^{th}$ moment, the median, the mode and the 100$k$-percentage points of the generalized distribution were established. Estimation of the parameters of the distribution through maximum likelihood method was accomplished with the aid of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2002